DUVAL (Nathalie), L’École des Roches

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

discussion a propos de la classification des roches detritiques en particulier des roches arenacees.

dans le domaine de la petrographie s'edimentaire et de la sedimentologie,la classification des roches sedimentaires ,en particulier des roches detritiques,est un probleme a discussion et en merite encore.dans notre langue persane ce probleme ,c'est-a-direla classification et sa transposition et la traduction de sa terminologie en persan,merite une attention particuliere. ce probleme s...

متن کامل

Nathalie Lazaric

The aim of this article is to understand permanence and changes inside organizational routines. For this purpose, it seems important to explain how individual and collective memorisation occurs, so as to grasp how knowledge can be converted into routines. Although memorisation mechanisms imply a degree of durability, our procedural and declarative knowledge, and our memorisation processes, evol...

متن کامل

Vitae for Nathalie Revol

Nathalie REVOL Research scientist at INRIA Birth date: 04-12-1967 3 children (born in 2005 and 2008) Citizenship: french Address: INRIA, AriC team LIP, Université de Lyon École Normale Supérieure de Lyon 46, allée d’Italie 69364 Lyon Cedex 07, France Phone number: (33) 4-37-28-74-76 Fax: (33) 4-72-72-80-80 E-mail: [email protected] Web page: http://perso.ens-lyon.fr/nathalie.revol/ Las...

متن کامل

Minimal Duval Extensions

A word v = wu is a (nontrivial) Duval extension of the unbordered word w, if (u is not a prefix of v and) w is an unbordered factor of v of maximum length. After a short survey of the research topic related to Duval extensions, we show that, if wu is a minimal Duval extension, then u is a factor of w. We also show that finite, unbordered factors of Sturmian words are Lyndon words.

متن کامل

About Duval Extensions ∗

A word v = wu is a (nontrivial) Duval extension of the unbordered word w, if (u is not a prefix of v and) w is an unbordered factor of v of maximum length. A survey of the state of the art of research on Duval extensions is given in this paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Histoire de l'éducation

سال: 2010

ISSN: 0221-6280,2102-5452

DOI: 10.4000/histoire-education.2184